Refine Your Search

Topic

Author

Search Results

Technical Paper

Optimizing the Strength and Ductility of Al-6061 Alloy by Various Post-Rolling Ageing Treatments

2014-04-28
2014-28-0022
The effect of different cold- rolling and cryo-rolling routes on the strength and ductility of Al-6061 alloy was thoroughly investigated. Rolling decreased the grain size and increased the strength according to the Hall-Petch relationship. However subjecting the samples to ageing at different temperatures and for different time period increased the strength and improved the ductility. The ductility was improved due to the rearrangement and even decrease in dislocation density due to recovery and recrystallization during ageing while the strength was maintained due to ageing. Evolution of microstructure was investigated by optical microscopy, scanning electron microscopy. Preliminary hardness measurements coupled with tensile tests indicate the improvement of both yield strength and ductility. The disparity in ultimate tensile strength, yield strength and the elongation to failure with different ageing temperatures and for different time period is determined and discussed.
Technical Paper

Numerical Investigation of Aerodynamic Characteristics on a Blunt Cone Model at Various Angles of Attack under Hypersonic Flow Regimes

2024-06-01
2024-26-0446
The study of aerodynamic forces in hypersonic environments is important to ensure the safety and proper functioning of aerospace vehicles. These forces vary with the angle of attack (AOA) and there exists an optimum angle of attack where the ratio of the lift to drag force is maximum. In this paper, computational analysis has been performed on a blunt cone model to study the aerodynamic characteristics when hypersonic flow is allowed to pass through the model. The flow has a Mach number of 8.44 and the angle of attack is varied from 0º to 20º. The commercial CFD solver ANSYS FLUENT is used for the computational analysis and the mesh is generated using the ICEM CFD module of ANSYS. Air is selected as the working fluid. The simulation is carried out for a time duration of 1.2 ms where it reaches a steady state and the lift and drag forces and coefficients are estimated. The pressure, temperature, and velocity contours at different angles of attack are also observed.
Technical Paper

Noise, Vibrations and Combustion Investigations of Preheated Jatropha Oil in a Single Cylinder Genset Engine

2015-04-14
2015-01-1668
High viscosity of vegetable oil causes ignition problems when used in compression ignition engines. There is a need to reduce the viscosity before using it as engine fuel. Preheating and pre-treating of vegetable oils using waste heat of exhaust gases is one of the techniques, which reduces the viscosity and makes it possible to use it as alternate fuel for some niche applications, without requiring major modifications in the engine hardware. Several applications such as decentralized power generation, agricultural engines, and water pumping engines, can use vegetable oils as an alternative fuel. In present investigation, performance, combustion, and emission characteristics of an engine using preheated 20% blend of Jatropha oil with mineral diesel (J20) has been evaluated at a constant speed (1500 rpm) in a single cylinder four stroke direct injection diesel engine.
Technical Paper

New Concept PFI-Atomizer Fueling System in a Small Single Cylinder SI Engine

2020-09-15
2020-01-2233
This paper presents results from tests using a fuel injection system which uses an ultrasonic atomizer paired with a port fuel injector (PFI). This concept was tested on a four stroke 200 cc spark-ignited two-wheeler engine. A throttle body with a PFI mounted on it was added to the air intake path of the engine, replacing the conventional carburetor. The ultrasonic disc was mounted in such a way, that the injected fuel from the PFI, falls directly on the face of the disc. The atomizer and the PFI were timed and synchronized appropriately using an Arduino® microcontroller, to promote atomization and vaporization of the fuel injected. The atomizer disc was excited using a high frequency oscillator circuit. The engine could be tested at various speeds and loads, corresponding to points which lie on the local drive duty cycle. The engine test results showed improvement in the engine exhaust emissions.
Technical Paper

Near Nozzle Flow and Atomization Characteristics of Biodiesel Fuels

2017-10-08
2017-01-2327
Fuel atomization and air-fuel mixing processes play a dominant role on engine performance and emission characteristics in a direct injection compression ignition engine. Understanding of microscopic spray characteristics is essential to predict combustion phenomena. The present work investigated near nozzle flow and atomization characteristics of biodiesel fuels in a constant volume chamber. Waste cooking oil, Jatropha, and Karanja biodiesels were applied and the results were compared with those of conventional diesel fuel. The tested fuels were injected by a solenoid injector with a common-rail injection system. A high-speed camera with a long distance microscopic lens was utilized to capture the near nozzle flow. Meanwhile, Sauter mean diameter (SMD) was measured by a phase Doppler particle analyzer to compare atomization characteristics.
Technical Paper

NOx Reduction in SI Engine Exhaust Using Selective Catalytic Reduction Technique

1998-02-23
980935
Copper ion-exchanged X-zeolite with urea infusion was tested for nitrogen oxide (NOx)conversion efficiency in this study. Temperature datapoints were obtained to arrive at peak activation temperatures. Variation of the air/fuel ratio showed the widening of the λ-window(the range of air-fuel ratios over which the NOx conversion efficiency is considerable); a maximum of 62% NOx conversion efficiency was obtained in the lean-burn range. Effects of space velocity variations were also observed. In order to minimise the deactivation of zeolite caused by water, ammonium carbonate and ammonium sulphate were deposited on the copper ion-exchanged X-zeolite and the corresponding NOx conversion efficiencies measured. Ammonia slip (leakage of unreacted ammonia), a prospective pollution hazard, was observed to be more in case of urea infusion than ammonium salt deposition at higher temperatures.
Technical Paper

Investigations on the Design and Performance of Two Types of Hot Surface Ignition Engines

1992-09-01
921632
Use of methanol and ethanol in conventional diesel engines is associated with problems on account of the high self ignition temperature of these fuels. The Hot Surface Ignition (HSI) method wherein a part of the injected fuel is made to touch an electrically heated hot surface for ignition, is an effective way of utilizing these fuels in conventional diesel engines. In the present work two types of HSI engines, one using a large ceramic base and the other using a conventional glowplug were developed. These engines were tested with methanol, M.spirit (about 90 % methanol and 10 % ethanol) and diesel. The results of performance, fuel economy emissions and combustion parameters including heat release rates for these fuels with both the types of HSI engines are presented. Diesel engines are commonly used as primemovers in the mass transportation and agricultural sectors because of their high brake thermal efficiency and reliability.
Technical Paper

Investigation of Real-World Crash Using an Accident Reconstruction Methodology Employing Crash Test Data

2024-01-16
2024-26-0288
Automotive crash data analysis and reconstruction is vital for ensuring automotive safety. The objective of vehicle crash reconstruction is to determine the vehicle's motion before, during, and after the crash, as well as the impact on occupants in terms of injuries. Simulation approaches, such as PC CrashTM, have been developed to understand pre-crash and post-crash vehicle motion, rather than the crash phase behavior. Over the past few decades, crash phase simulations have utilized vehicle finite element models. While multibody simulation tools are suitable for crash simulations, they often require detailed crash test data to accurately capture vehicle behavior, which is not always readily available. This paper proposes a solution to this limitation by incorporating crash test data from databases, such as NHTSA, Global NCAP, consumer rating reports, and videos, along with a multibody-based approach, to conduct crash phase simulations.
Technical Paper

Intelligent Classification of Automotive Horn Sound Quality

2024-01-16
2024-26-0204
The primary function of an automotive horn is to alert pedestrians and other nearby vehicles to their safe passage on the road. Most of the human population is subjected to a certain amount of horn sound dosage daily. The study of automotive horn sound quality is equally important as their sound generation mechanism in passenger cars. The sound quality of automotive horns can be studied through subjective and objective test methods. In the present study, a subjective jury test and objective analysis using psychoacoustic parameters are conducted to classify car horn sound samples according to pleasantness. Twenty-two car horns, consisting of a disc and shell, are chosen for binaural sound recording. The recorded sound samples are used for subjective and objective analysis. Thirty members participated in the jury test, and a semantic differential method was used to collect the user response. The Tukey range test is used to classify the subjective test data.
Technical Paper

Influence of Particle Size of Graphite on Performance Properties of Friction Composites

2007-10-07
2007-01-3967
Non-Asbestos Organic (NAO) brake- material research has been significant in the last decade in an attempt to replace the conventional semi-metallic and asbestos based materials. Influence of ingredients in this multi-ingredient (generally 10-25 in different proportions) system on performance properties, however, is still not thoroughly researched area because of complexity involved and needs intensive efforts to understand this aspect. Graphite is one of the most important and almost inevitable ingredients in friction materials. A wide variety of graphite varying in origin, particle size, crystallinity, thermal conductivity etc. is used by the industry. An in-depth and systematic study on the influence of size of graphite on tribo-performance, however, is not available.
Technical Paper

In-Cylinder Air-Flow Characteristics Using Tomographic PIV at Different Engine Speeds, Intake Air Temperatures and Intake Valve Deactivation in a Single Cylinder Optical Research Engine

2016-02-01
2016-28-0001
Fuel-air mixing is the main parameter, which affects formation of NOx and PM during CI combustion. Hence better understanding of air-flow characteristics inside the combustion chamber of a diesel engine became very important. In this study, in-cylinder air-flow characteristics of four-valve diesel engine were investigated using time-resolved high-speed tomographic Particle Imaging Velocimetry (PIV). For visualization of air-flow pattern, fine graphite particles were used for flow seeding. To investigate the effect of different operating parameters, experiments were performed at different engine speeds (1200 rpm and 1500 rpm), intake air temperatures (room temperature and 50°C) and intake port configurations (swirl port, tangential port and combined port). Intake air temperature was controlled by a closed loop temperature controller and intake ports were deactivated by using a customized aluminum gasket.
Technical Paper

Hydrocarbon Modeling for Two-Stroke SI Engine

1994-03-01
940403
Hydrocarbon emissions due to short-circuiting of the fresh charge during scavenging process is a major source of pollution from the two-stroke spark ignition engines. This work presents a prediction scheme for analysis of hydrocarbon emission based on the material balance considerations. A generalized form of globular combustion equation has been used for general applicability of the scheme to any fuel or fuel blends. The influence of mixture quality, scavenging characteristics, residual contents and the delivery ratio are predicted. A good qualitative prediction has been established at all delivery ratios. The predictions are found quantitatively satisfactory in the higher delivery ratio range where the short-circuiting phase of the scavenging process is dominant.
Technical Paper

Fourier Transform Infrared Spectroscopy Models to Predict Cetane Number of Different Biodiesels and Their Blends

2020-04-14
2020-01-0617
The ignition quality of a fuel is described by its cetane number. Experimental methods used to determine cetane number employ Co-operative fuel research (CFR) engine and Ignition quality tester (IQT) which are expensive, have less repeatability and require skilled operation, and hence least preferred. There are many prediction models reported, which involve number of double bonds and number of carbon atoms whose determination is not direct. Using models that relate biodiesel composition to its cetane number is limited by the range of esters involved. Hence, a model to predict cetane number of biodiesels that addresses the limitations of the existing models, without ignoring the influence of factors such as degree of unsaturation and number of carbon atoms, is needed. Fourier transform infrared spectroscopy (FTIR) could be one such method.
Technical Paper

Extrapolation of Service Load Data

2009-05-13
2009-01-1619
Fatigue design has to account for the scatter of component geometry, material behavior and loading. Scatter of the first two variables is mainly due to manufacturing and material sourcing. Loading on the other hand depends decisively on operating conditions and customer usage. Loading is certainly most difficult to determine. Tests on proving ground or even long-term real time measurements are used to obtain actual load time histories. Because of the costs of measurements and safety measure, real-time measurements are used exceptionally to gain changes in the usage profile. In this paper, an attempt has been made to find the difference in the extrapolated data to the actual data. A comparison has been made between the actual road distance of 2000 km to the extrapolated data of 100 km, 500 km and 1000 km to 2000 km. The front Axle channel is taken for the study.
Technical Paper

Experimental and Numerical Study on Automotive Pleated Air Filters

2016-02-01
2016-28-0100
Nowadays, the automotive engines are downsizing, thus offering limited space for engine intake air filter media. This results in higher aerosol velocity through the filter media. At a higher velocity, the aerosol particles reenter into the fluid stream and thereafter penetrate through the filter media. This causes significant reduction in filtration efficiency. Here, an attempt is made to understand the particle penetration behavior of automotive engine intake air filter media. To establish the flow field, numerical simulations are carried out on a panel type pleated air filter with pleat height 26 mm, pleat pitch 4.5 mm and pleat angle 2.50 degree. A series of tests are conducted using ISO 12103 A2 fine dust on a flat cellulosic paper filter media at a range of velocities derived numerically. The methodology followed for modeling the fibrous media using finite volume commercial CFD code for analyzing the flow field is presented.
Technical Paper

Experimental and Modeling Investigation of NO Formation Mechanism for Biodiesel and Its Blend with Methanol

2019-04-02
2019-01-0217
Biodiesel makes an attractive option to replace fossil diesel owing to its applicability in diesel engines without major modifications. An increase in NO emissions with biodiesel compared to diesel is a major concern for its wider use. Blending alcohols, such as methanol, with biodiesel is a potential remedy to mitigate NO formation, as suggested by experiments. However, computational investigations studying the effect of biodiesel-methanol blends on NO formation are scarce. A combined experimental and computational approach is adopted here to investigate the NO formation mechanism with neat biodiesel and biodiesel-methanol blend fueled light duty diesel engine. Firstly, a new compact kinetic model is utilized consisting of oxidation reactions for methyl butanoate and n-dodecane as a surrogate for biodiesel. A surrogate is defined to represent biodiesel based on a combined property and functional group based approach.
Technical Paper

Experimental Investigations on the Combustion of Ethanol in a Low Heat Rejection Engine Using Different Methods

1993-03-01
930931
As alternate fuels, ethyl and methyl alcohols stand out because of the feasibility of producing them in bulk from plentifully available raw materials. In the present work, ethanol is used as the only fuel, in the standard and Low Heat Rejection(LHR) diesel engines by adopting three different methods. In the first method, ethanol as the sole fuel was used in the LHR engine with normal metal glowplug and in the second method spark plug assistance was used to initiate combustion. In the third method, ethanol was used as the sole fuel in a LHR engine and a ceramic glow plug was used to initiate combustion. The engine was tested for performance and emissions for the above three methods of 100% ethanol operation in both the standard and LHR diesel engine and the results are compared. The spark plug assisted ethanol operation in the LHR engine gave the highest brake thermal efficiency and the lowest emissions.
Technical Paper

Experimental Investigations on Three Different Methods of Using 100% Methanol in a Low Heat Rejection Engine

1992-02-01
920197
As alternate fuels, ethyl and methyl alcohols stand out because of the feasibility of producing them in bulk from plentifully available raw materials. In the present work, methanol is used as the only fuel, in a Low Heat Rejection(LHR) engine by adapting three different methods. In the first method, methanol as the sole fuel was used in the LHR engine with a ceramic glowplug and in the second spark plug assistance was used to initiate combustion of the injected methanol. In the third method, methanol was used as the sole fuel in a LHR engine by a new method in which part of the methanol fuel was inducted through a heated inlet manifold using a carburetor and another part of methanol (with 1% castor oil for lubrication) was injected through the normal injector. With inducted methanol air charge temperature at 70 C and above the engine operated smoothly.
Technical Paper

Experimental Investigation on the Use of Water Diesel Emulsion with Oxygen Enriched Air in a DI Diesel Engine

2001-03-05
2001-01-0205
A single cylinder, direct injection diesel engine was run on water diesel emulsion at a constant speed of 1500 rpm under variable load conditions. Water to diesel ratio of 0.4 on the mass basis was used. Tests indicated a considerable reduction in smoke and NO levels. This was accompanied by an increase in brake thermal efficiency at high outputs. HC & CO levels, ignition delay and rate of pressure rise went up. The heat release rate in the premixed burn period was higher. When the oxygen concentration in the intake air was enhanced in steps up to 25% along with the use of water diesel emulsion, the brake thermal efficiency was improved and there was a further reduction in the smoke level. HC and CO levels also dropped. NO emission went up due to increased temperature and oxygen availability. An oxygen concentration of 24% by volume was optimal as the NO levels were near about base diesel values.
Technical Paper

Experimental Investigation of Non-Edible Vegetable Oil Operation in a LHR Diesel Engine for Improved Performance

1993-10-01
932846
The main objective of the present research work is to utilise the higher amounts of exhaust energy of the LHR engines. Three vegetable oils(neem oil, rice bran oil and karanji oil) were tested in the low heat rejection engine. An electrical heater was used to heat the thick vegetable oils or the air and the results were studied. the electrical heater energy was correlated with the energy available in the exhaust of the LHR engine, so that the electrical heater can be replaced by a heat exchanger in the actual engine. The three vegetable oils, without heating, indicated a lower brake thermal efficiency of 1-4% when compared with the standard diesel engine. When these thick vegetable oils are heated and used in LHR engines the brake thermal efficiency improves. For every vegetable oil, there is an optimum temperature at which it gives the best performance.
X